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A theory of the efficiency of the plasma flow generation process is presented. A measure of the
efficiency of plasma self-acceleration of mesoscale and mean flows from the heat flux is introduced
by analogy with engines, using the entropy budget defined by thermal relaxation and flow
generation. The efficiency is defined as the ratio of the entropy destruction rate due to flow
generation to the entropy production rate due to "T relaxation !i.e., related to turbulent heat flux".
The efficiencies for two different cases, i.e., for the generation of turbulent driven E!B shear flow
!zonal flow" and for toroidal intrinsic rotation, are considered for a stationary state, achieved by
balancing entropy production rate and destruction rate order by order in O!k# /k!", where k is the
wave number. The efficiency of intrinsic toroidal rotation is derived and shown to be eIR
$!Mach"th

2 $0.01. The scaling of the efficiency of intrinsic rotation generation is also derived and
shown to be ""

2!q2 / ŝ2"!R2 /LT
2"=""

2!Ls
2 /LT

2", which suggests a machine size scaling and an
unfavorable plasma current scaling which enters through the shear length. © 2010 American
Institute of Physics. %doi:10.1063/1.3496055&

I. INTRODUCTION

Turbulence driven mesoscale and mean flows in fusion
plasmas, such as E!B shear flows %zonal flow !ZF"& !Ref. 1"
and intrinsic rotation in toroidal direction,2,3 play an impor-
tant role in achieving better confinement and improving sta-
bility. The reduction of turbulent transport by radially
sheared E!B flow4,5 is a widely accepted concept in the
fusion community. The reduction of transport by sheared to-
roidal rotation4 is also argued based on the idea that the
radial force balance relates the toroidal rotation to the radial
electric field Er, which is responsible for the transport reduc-
tion. The stabilization of resistive wall modes by toroidal
rotation6 is discussed as a means to achieve and sustain a
high # discharge. The need for intrinsic flow in the transport
reduction and the stabilization will surely increase for the
future larger machines since it becomes harder to drive the
plasma rotation by external means !NBI" due to shallow
beam penetration and large plasma inertia.

One of the main issues in intrinsic flow physics is to
explain its generation processes. The system is characterized
by no external momentum input, while energy is injected
into a system using methods such as radio-frequency heating.
To explain the generation of flows, the concept of a wave
driven residual stress was developed and extensive
experimental2,7,8 and theoretical9,10 research on this topic is
ongoing. The residual stress is a component of momentum
flux which is not proportional to either flow or flow shear as

'ṼrṼ#( = − $%'V#(! + Ur'V#( + &r#
res. !1"

The first term is diffusive part, the second term is pinch,11–13

and the last term is the residual stress. Intrinsic torque in

toroidal plasmas, which is related to the residual stress via
'=−" ·&r#

res, was observed for a plasma with no flow and
unbalanced NBI injection !1 co+2 counter".7 For a cylin-
drical plasma, the residual stress was determined by measur-
ing the total flux 'ṼrṼ(( and the diffusive part −$('V((!
separately.8 Note that the direction of intrinsic flow is azi-
muthal in the case of a cylindrically symmetric plasma. The
residual contribution was determined by calculating the dif-
ference of the two !i.e., the total flux and the diffusive flux",
since there was no radial convection, i.e., no pinch effect, in
the experiment. Symmetry breaking mechanisms were iden-
tified and shown to induce a nonzero Reynolds stress
'ṼrṼ#() 'k#k(( which includes the residual stress.10 The mo-
mentum conservation theorem was formulated for wave-
particle interaction and the resultant momentum flux, which
includes the diffusive flux, the pinch, and the wave-driven
residual stress, was calculated.9

In the framework of residual stress, the generation pro-
cess of flows can be understood as a conversion of thermal
energy, which is injected into a system by heating, into ki-
netic energy of macroscopic flow by drift wave turbulence
excited by "T, "n, etc. !Fig. 1". From this picture, one may
conceptually view the plasma as a type of an engine, where
energy input drives turbulence, which leads to "T relaxation
but also to the generation of flow. See Table I for a compari-
son between a “car” and intrinsic rotation. The idea of attrib-
uting flow generation to heat was mentioned by Carnot14 to
explain the general circulation of the Earth’s atmosphere.
The concept of an engine may be applied to the problem of
the solar differential rotation as well. In the case of solar
differential rotation, energy is generated by fusion at the core
of the sun !an example of fusion which actually works, albeita"Electronic mail: yukosuga@physics.ucsd.edu.
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one using inertial confinement", leading to excitation of tur-
bulence at the convective zone and generation of the solar
differential rotation profile. See Table II for a comparison. In
the fusion community, some attempts to characterize flow
generation in plasmas as the result of the action of a thermo-
dynamic engine have been discussed.15,16 In those, flow gen-
eration is treated as analogous to the work !power, more
precisely" which can be extracted from the exchange of heat
between hot and cold parts of plasmas, i.e., the heat flux
driven by "T. However, these discussions have not given a
systematic calculation for the figure of merit of the engine.

In this paper, using the physical picture of plasma flow
generation as an engine and a simple kinetic model with drift
kinetic ions and adiabatic electrons, we formulate an explicit
expression for the criterion for engine efficiency by compar-
ing rates of entropy production/destruction due to thermal
relaxation/flow generation. Flow generation reduces entropy
since it leads to large scale order in the system. We formulate
the entropy budget for the turbulent relaxation process by
calculating the time evolution of the mean field entropy.17

The mean field entropy is the part of entropy defined
using only the mean field distribution function as
S0)−*d*'f(ln'f(, which evolves due to the action of turbu-
lence. Note that S0 is defined in terms of coarse grained
fields. We show that thermal relaxation creates entropy,
while intrinsic flow generation decreases the entropy of the
system, consistent with the physical picture of flow as an
ordered state. We also show that the destruction of entropy
due to zonal flow is larger in magnitude than that due to
intrinsic toroidal rotation by order of O!k! /k#", where k is a
representative wave number of the drift waves. Given the
disparity in their magnitude, we discuss the nature of the
stationary state achieved by order-by-order balance in the
entropy budget. We show that the lowest order balance, i.e.,
the balance between the entropy production rate due to the
thermal relaxation and the entropy destruction rate due to the
zonal flow generation, recovers the conventional stationary
state, where turbulence is suppressed by zonal flow shearing.
After discussing the class of possible stationary states, we
define and calculate the efficiency of plasma flow drive using

the entropy production rate and destruction rate. More pre-
cisely, an upper bound on the efficiency is calculated, since
only the dominant contribution to the entropy production rate
is retained. The scaling of intrinsic toroidal rotation genera-
tion is derived by using the entropy destruction rate due to
wave driven residual stress and shown to be proportional to
""

2!Ls
2 /LT

2". We emphasize that these results are obtained for,
and apply only to, a standard, generic model of drift wave
turbulence.

The reminder of the paper is organized as follows. In
Sec. II, the entropy budget for turbulent relaxation with flow
generation is formulated. Using the expression for the en-
tropy budget, we discuss the possible stationary state with
coupling to flows. In Sec. III, we define and calculate the
efficiency of the plasma flow drive by using the entropy
production rate derived in Sec. II. In Sec. IV, we present the
discussion and conclusions.

II. ENTROPY BUDGET

In this section, we formulate the entropy budget for the
processes of turbulent relaxation and flow generation for a
simple model of drift-ITG mode turbulence. In this deriva-
tion, we assume simple drift kinetic ions and adiabatic elec-
trons. Given the basic structure of entropy budget, we dis-
cuss the possible stationary states with and without flow
generation. We derive a coupled set of equations for turbu-
lent fluctuations, +f2, and shear flow evolution, which are
analogous to the conventional predator-prey model for drift
wave-zonal flow turbulence system, but are formulated at the
level of phase space dynamics. The role of intrinsic toroidal
rotation generation in stationary state is discussed as well.

A. Formulation

In kinetic theory, entropy is given as S)−*d3xd3

!vf ln f , where f is the distribution function of a system.
Here f is normalized to *d3vf =n. For a general case,
f evolves in time according to the Boltzmann equation
df /dt=C!f", where C!f" is a collision operator. For this
system—which is open—one can calculate the evolution of
entropy as !d*)d3xd3v"

TABLE II. Comparison of differential rotation in the sun and intrinsic rota-
tion in tokamak.

Sun Tokamak

Heat source Fusion reaction at the core Heat deposition

Turbulence source "T "T

Threshold Schwarzschild criteria ITG

1

T
+dT

dz
+, !- − 1"

1

"
+d"

dz
+ R /LT,R /LT,c

Turbulence Convective turbulence ITG turbulence

Symmetry
breaking Rotation, # Velocity shear, 'VE(!

Stratification Intensity gradient, I!x" , . . .

Resultant flow Polar differential rotation Intrinsic rotation

v%!(" v#!r"
B.C. ? SOL, edge, etc.

FIG. 1. Energy input Q sets temperature profile "T which generates turbu-
lence in a system. The turbulence leads to both relaxation and generation of
flow.

TABLE I. Car and intrinsic flow.

Car Intrinsic rotation

Fuel Gas Heating⇒"T

Conversion Burn "T driven DW turbulence

Work Cylinder/Cam Residual stress direction/symmetry breaking

Result Wheel rotation Flow
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$tS = −, d*C!f"ln f +, d3v, dA · !vf ln f" , !2"

where *dA denotes the integral over the surface area. From
this relation, one can see that the net entropy of a system
changes in two ways, i.e., by collisional entropy production
!positive by H-theorem" and by a boundary flux term, which
arises as a consequence of outflow of particles, heat, turbu-
lence intensity, etc. In the following analysis the boundary
term is dropped by assuming a boundary condition such as
f )n→0 or vn→0, where vn is the velocity component nor-
mal to the boundary. Before preceding, we offer the obser-
vation that the boundary term may play an important role in
the entropy budget. For example, the role of the boundary
term for thermodynamic systems is described by Ozawa
et al.18 as follows. For a system, as shown in Fig. 2, the
region of interest exchanges heat across the boundary be-
tween hot and cold regions. The entropy production associ-
ated with the heat exchange through the boundaries is
−Fin /TH and Fout /TC, respectively, where Fin,0 is the in-
flow of heat, Fout,0 is the outflow of heat, TH is the tem-
perature of hot region, and TC is the temperature of cold
region. Since for a stationary state, the influx and outflux are
equal, the total effect of the boundary term on the net entropy
balance is

−
Fin

TH
+

Fout

TC
= F

TH − TC

TCTH
, 0, !3"

which shows a net contribution to the entropy budget from
the boundary terms. Such an effect can be important in toka-
mak plasmas when one considers an annular region with
steep temperature gradient, which suggests a significant dif-
ference in temperature across boundary. Here we consider a
simplified case with no entropy outflow, so net volume inte-
grated production and dissipation must cancel. As a conse-
quence then, this theory is probably more directly relevant to
+f particle simulations—which impose the boundary condi-
tion "%=0 and so preclude any outflux of entropy—than to
actual tokamak plasmas. Indeed, since trends in the evolution
of intrinsic rotation appear closely linked to the L-H transi-
tion, we note that the drop in the cross-boundary flux
'ṽr+f2( / 'f( !which necessarily occurs at the transition" will
impact the global entropy budget, and thus should be consid-
ered in models of intrinsic rotation evolution.

Since we are interested in turbulent relaxation, we
focus on the generation of the “mean field” entropy,17

S0)−*d*'f(ln'f(, where 'f( is a coarse grained mean distri-
bution function. By decomposing f = 'f(++f , one can ap-
proximate the coarse grained entropy as

'S( = −, d*'!'f( + +f"ln!'f( + +f"(

- −, d*'f(ln'f( −, d*
'+f2(
'f(

) S0 + S2,

where S2)−*d*'+f2( / 'f( is entropy of fluctuations. Using
the decomposition of entropy and a linearized collision op-
erator, i.e., C!f"=C!'f("+C!+f"-C!+f", with 'f( thus driven
to a local Maxwellian, Eq. !2" can be rewritten in terms of S0
as

$tS0 = − $tS2 −, d*
'+fC!+f"(

'f(

= $t, d*
'+f2(
'f(

−, d*
'+fC!+f"(

'f(
, !4"

which relates the evolution of the mean field entropy to the
evolution and collisional dissipation of +f2. Note that the last
term, collisional dissipation, is positive definite, as a conse-
quence of the H-theorem.

To calculate +f2 generation, we employ a simple drift
kinetic equation for ions,

$t f + v#"#f +
c

B
ẑ ! "%̃ · "f +

.e.
mi

Ẽ#

$ f

$v#

= C!f" , !5"

and assume adiabatic response for electrons,

+ne

n0
=

.e.%̃
Te

. !6"

Thus, we are interested in ITG turbulence as a specific model
of drift wave turbulence. For +f2 balance, we have

$t/ +f2

2'f(0 +
1
r
$r1r/Ṽr

+f2

2'f(02 −
'+fC!+f"(

'f(

= − 'ṽr+f(
'f(!
'f(

−
.e.
mi

'Ẽ#+f(
1

'f(
$'f(
$v#

, !7"

where a scale separation between mean and fluctuation, i.e.,
$t+f .$t'f( and "+f ."'f(, was assumed. Since we are in-
terested in the evolution of *d*'+f2( / 'f( %see Eq. !4"&, we
need to integrate Eq. !7" over phase space. Taking the phase
space integral, one obtains

$t, d*
'+f2(
2'f(

=, d3x!P − D" , !8"

where

FIG. 2. Heat flux through boundary. The region of interest is surrounded by
hot and cold regions with the temperatures TH and TC.
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P ), d3v1− 'ṽr+f(
'f(!
'f(

−
.e.
mi

'Ẽ#+f(
1

'f(
$'f(
$v#

2 , !9a"

D = −, d3v
'+fC!+f"(

'f(
. !9b"

Here P is the +f2 production rate due to the free energy in
configuration space !i.e., $$'f( /$r" and velocity space !i.e.,
$$'f( /$v#". D is the collisional dissipation.

To calculate P, we assume 'f( as a local Maxwellian
with a mean shear flow, 'V!(!r" and 'V#(!r". With quasineu-
trality ñe= ñi, one obtains

P = −
n

TiLT
Qturb

i −
n

vthi
2 'V!(!'ṼrṼ!( −

n

vthi
2 'V#(!'ṼrṼ#(

+
1
Ti

'J̃#
iẼ#( , !10"

where vthi)3!Ti /mi", LT
−1)!dTi /dr" /Ti, Qturb

i

)n−1*d3vE'Ṽr+f(= 'ṼrTi(, 'ṼrṼ()n−1d3v!v− 'V("'Ṽr+f(,
and 'J̃#

iẼ#(= .e.*d3v!v# − 'V#("'+fẼ#(. Note that the mean ion
velocity was replaced by the mean plasma velocity due to
the large ion inertia. The first three terms are related to the
spatial inhomogeneity of a local Maxwellian and have the
standard form of the entropy production rate JkXk,
where Jk= 4Qturb

i , 'ṼrṼ!( , 'ṼrṼ#(5 is the flux vector and
Xk= 4−'T(! ,−'V!(! ,−'V#(!5 is the thermodynamic force. In
the following, we further simplify the entropy production
rate by employing a simple model to calculate the turbulent
flux as Jk=Jk%Xl& and discuss their consequences. The last
term in Eq. !10" comes from the velocity space dependence
in the distribution function and represents the effect of reso-
nant heating. Using Poynting’s theorem,1,9 one can write the
heating term as

, d3x'J̃#
iẼ#( =, d3x!− $tW − " · Sw − 'J̃! · Ẽ!(" . !11"

Here W is wave energy density and Sw is flux of wave energy
density. For a stationary state, the first term in the right hand
side is zero, $tW=0. The second term also vanishes due to
the boundary conditions, *d3x" ·Sw=*dA ·Sw .boundary→0. In
other words we assumed there are no outgoing waves, again
as enforced in simulations. The third term is also zero,
'J̃! · Ẽ!(=0, since J!)E!B at the lowest order. Thus, the
heating term is dropped in the following discussion.

To further simplify the entropy production rate term in
Eq. !10", we employ a simple model for flux terms here. The
first term in Eq. !10" is related to the thermal relaxation. For
simple ITG turbulence, we have a simple flux-gradient rela-
tion Qturb

i =−$i"T, where the thermal conductivity $i is

$i $ 6
k

/k
DW.ṽr.k

20!R/LT − R/LT,c" . !12"

Here /k
DW is the correlation time for ITG drift wave turbu-

lence and 0 is the step function, which accounts for the
threshold condition. Using the flux-gradient relation, it fol-

lows that the production rate due to thermal relaxation is
positive definite, i.e.,

−
n

TiLT
Qturb

i = n$i1"T

T
22

, 0. !13"

Thus turbulent thermal relaxation produces entropy. The sec-
ond and the third terms in Eq. !10" are the momentum flux in
the perpendicular and parallel directions, which contain in-
formation concerning flow generation. For the perpendicular
flow, for simplicity we consider only E!B shear flow or
zonal flow, 'V!(!= 'VE(!. The momentum flux in the perpen-
dicular direction can be calculated using the wave kinetic
equation as 'ṼrṼ((=K'VE(! !see Appendix B for the deriva-
tion", where

K ) 6
k

cs
2/ZF

"s
2k(

2

!1 + k!
2 "s

2"21− kr
$''k(
$kr

2 , !14"

'k ) !1 + k!
2 "s

2"2+ e%k

Te
+2

. !15"

Here /ZF is the correlation time of the zonal flow, 'k is the
fluctuation potential enstrophy, and K is related to the
nonlinear growth rate of zonal flow as -ZF=qr

2K, with qr
as the radial wave number of the zonal flow. Making
the assumption that the zonal flow grows !-ZF,0⇔K
,0⇔−kr$ ''k( /$kr, a standard criterion for the zonal flow
growth19", one can show that the entropy production rate due
to zonal flow growth is negative definite, i.e.,

−
n

vthi
2 'V!(!'ṼrṼ!( = − nK1 'VE(!

vthi
22

1 0. !16"

Hence, the generation of zonal flow leads to a destruction of
entropy. This is physically plausible and can be easily under-
stood, since zonal flow shears oppose relaxation of "T by
reducing transport, and hence act against entropy production.
Put differently, one can regard zonal flow as a large scale
coherent structure, and the generation of a coherent structure
may be viewed as a restoring “order” to the system, thus
decreasing the entropy of that system. Note that the entropy
destruction occurs only in the sense that it opposes entropy
production due to other relaxation processes, i.e., thermal
relaxation, here. The overall entropy production rate, i.e., the
sum of those due to thermal relaxation and zonal flow gen-
eration, cannot be negative. The parallel momentum flux can
be decomposed as20

'ṼrṼ#( = − $%'V#(! + U'V#( + &r#
res. !17"

The first term is turbulent diffusion of parallel momentum,
the second term shows the effect of the pinch, and the third
term is residual stress, which leads to generation of intrinsic
toroidal rotation. The pinch term is taken to be zero for sim-
plicity hereafter, since it only redistributes momentum by
radial convection. For a stationary state, there is no torque
input, so we must have

'ṼrṼ#( = − $%'V#(! + &r#
res = 0 !18"

to get a nontrivial toroidal flow profile, 'V#(!=&r#
res /$%. From
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this consideration, we see that the total entropy production
rate due to parallel momentum flux, )'V#(!'ṼrṼ#(, is zero for
a stationary state of intrinsic toroidal rotation. However, it
consists of two competing parts, i.e., the terms due to the
diffusive and residual parts of the momentum flux, respec-
tively. The diffusive part gives rise to viscous heating and the
resultant entropy production rate is shown to be positive defi-
nite, i.e.,

−
n

vthi
'V#(!'ṼrṼ#(.diff = n$%1 'V#(!

vthi
22

, 0. !19"

The residual part in the parallel momentum flux leads to the
generation of intrinsic toroidal rotation and the resultant en-
tropy production rate is shown to be negative definite, i.e.,

−
n

vthi
2 'V#(!'ṼrṼ#(.res = −

n

vthi
2 'V#(!&r#

res = −
n

$%vthi
2 &r#

res2 1 0,

!20"

where the stationary condition for the parallel momentum
flux 'V#(=&r#

res /$% was used.
After the simplification above, we have

P = n$i1"T

T
22

− nK1 'VE(!
vthi

22

+ n$%1 'V#(!
vthi

22

− n
&r#

res2

vthi
2 $%

.

!21"

The first term is due to thermal relaxation and is positive
definite. The second term is related to the zonal flow genera-
tion and is negative definite, given that the zonal flow grows.
The third term is due to viscous heating and is positive defi-
nite. The fourth term comes from the generation of intrinsic
toroidal rotation and is negative definite.

B. Flow generation and stationary state

Since we are interested in the calculation of the effi-
ciency of an engine for a stationary state, it would be impor-
tant to clarify the criteria for stationarity and the physical
picture of the system we are concerned with. Here we dis-
cuss the class of states which is defined by requiring +f2 to
be stationary. First we discuss the stationary state when the
flow generation is weak. Then we consider the case with
generation of flow.

When the generation of the flow is weak and the insta-
bility source is the temperature gradient, the production rate
becomes

P - n$i1"T

T
22

, 0, !22"

which is positive definite as long as a supercritical tempera-
ture gradient is maintained. To achieve stationarity, we must
balance production with dissipation, i.e., P=D. Note that
this is a global balance in phase space. One may understand
this balance as a cascade of “phasetrophy” +f2 in phase
space,21,22 where +f2 is produced by inhomogeneity in
'f(!x" at some scale in phase space, transferred to smaller
scale by nonlinear interaction and eventually dissipated by
collision.

However, by allowing the generation of flow, one can
access different types of stationary states, since entropy de-
struction occurs due to flow generation, as we saw in the last
section. With the generation of flow, one can achieve station-
ary state with P-0. See Table III for comparison.

Since 'ṼrṼ!()k(k!, 'ṼrṼ#()k(k#, and k!,k# for typical
drift wave turbulence, the entropy destruction rate due to
zonal flow generation is virtually always larger than that due
to intrinsic toroidal rotation generation. Alternatively put,
since self-generated flows are ultimately driven by wave mo-
mentum !i.e., momentum conservation laws relate flow mo-
mentum plus turbulence pseudomomentum to sources, sinks,
etc.", and since p(=k(N while p# =k#N, poloidal wave mo-
mentum naturally exceeds parallel wave momentum. In turn
then, absent damping, poloidal and zonal flows, naturally can
be expected to exceed intrinsic toroidal flows. Hence, the
P-0 state can be calculated order by order. To the lowest
order in O!k# /k!",

P - n$i1"T

T
22

− nK1 'VE(!
vthi

22

+ O!k#/k!" .

Note that K,0 for zonal flow growth. A nontrivial stationary
state is evident with P-0, i.e., when

'VE(!2 =
$i

K

vthi
2

LT
2 . !23"

Note that $i and K approximately cancel, i.e., $i /K$1, since
$i-6k.ṽr.k

2/k
DW, K-6k.ṽr.k

2/k
ZF, and /ZF$/DW for a simple

model. Here /k
ZF$1 /2eff, /k

DW$1 /34k, where 2eff is the
“Krook” operator for wave-wave scattering process,9 and
34k is the decorrelation rate. Thus, the stationary flow shear
is tied directly to the "T force by

TABLE III. Comparison of +f2 stationary state.

P=D P=0

Flow generation Not necessarily Yes

+f2 production "T relaxation "T relaxation

+f2 destruction Collisional dissipation !small scale" Flow generation !mesoscale"
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'VE(!2 -
vthi

2

LT
2 0!LT

−1 − LT,c
−1 " = vthi

2 1"T

T
22

0!LT
−1 − LT,c

−1 " ,

!24"

where the step function 0!LT
−1−LT,c

−1 " accounts for the thresh-
old behavior, originating from the turbulent thermal conduc-
tivity $i. Note that the profile of zonal flow is relatively
smooth. In other words the zonal flow treated here is a large
scale flow at the limit of long wavelength.

It is interesting to see how +f2 evolves in time with the
dominant terms in the production rate, i.e., that of "T relax-
ation and zonal flow generation,

$t, d*
'+f2(
2'f(

=, d3x7n$i1"T

T
22

− nK1 'VE(!
vthi

228 . !25"

Adding the equation for flow shear amplification by Rey-
nolds stress, we have

$t, d*
'+f2(
2'f(

=, d3x7n$i1"T

T
22

− nK1 'VE(!
vthi

228 ,

!26a"

$t
'VE(!2

2
= Kqr

2'VE(!2 − 2col'VE(!2, !26b"

where qr
2)6qqr

2'VE(q!
2 / 'VE(!2 is the spectral average of the

radial wave number of the zonal flow, qr. Note that Eqs.
!26a" and !26b" have the same structure as the familiar
predator-prey model for the DW-ZF turbulence system.23 For
comparison, recall the standard predator-prey form,

$t5 = -L5 − 6V!25 − 34!5"5 , !27a"

$tV!2 = 6V!25 − 2colV!2, !27b"

where 5 is the turbulence intensity, V!2 is flow shear, -L is
linear growth rate of a mode, 6 represents a coupling be-
tween flow and fluctuations, 34 is a decorrelation rate, and
2col is a collisional drag on flow. By comparing the two sets
of equations, not surprisingly, we see that the fluctuation en-
tropy or +f2 plays the same role of the fluctuation intensity 5.
In the terminology of the predator-prey system, +f2 or fluc-
tuation entropy is the “prey” and the zonal flow shear is the
“predator.” The prey grows with the relaxation process,
n$i!"T /T"2, and decreases with the generation of the preda-
tor, n'VE(!2K /vthi

2 . The predator increases by consuming the
prey !i.e., flow generated by fluctuations", Kqr

2'VE(!2, and
eventually dissipated by small, but finite, collisional damp-
ing, 2col'VE(!2. The steady state occurs when entropy genera-
tion and destruction balance each other. The stationary state
is thus

'VE(!2 =
$i

K

vthi
2

LT
2 , !28a"

K!.%̂.2" =
2col

qr
2 , !28b"

which has the same structure as a stationary solution for the
familiar predator-prey system, namely,

V!2 =
1
6

%-L − 34!5"& , !29a"

5 =
2col

6
. !29b"

The stationary level of the flow has similar structure in both
systems through the $i /LT

2 and -L−34 dependence. Both
systems show threshold behavior, $i)0!LT,c /LT−1" and
-L−34. The flow level increases as drive of instability is
strengthened, as manifested in 1 /LT and -L. This reflects the
fact that the dynamical system naturally couples "T free en-
ergy to the flow. The stationary level of turbulence K$$i in
the model and 5 in the standard predator-prey is tied to the
collisionality in flow, $i$K=2col /qr

2 and 5=2col /6, which is
consistent with gyrokinetic simulations.24

The role of generation of intrinsic toroidal rotation in
stationary state can be seen by going to the higher order
O!k# /k!" balance in the production rate term. After the can-
cellation at the lowest order terms, the production rate be-
comes

P = n
$%

vthi
2 'V#(!2 − n

&r#
res2

vthi
2 $%

, !30"

which consists of the production due to turbulent viscous
heating and the destruction due to toroidal flow generation.
The two terms cancel for a stationary state of intrinsic toroi-
dal rotation, since

'ṼrṼ#( = − $%'V#(! + &r#
res = 0. !31"

Hence, the total entropy production rate by the parallel mo-
mentum flux vanishes in a stationary state, i.e., the entropy
production by intrinsic toroidal flow is balanced by the en-
tropy destruction by intrinsic toroidal flow generation, to or-
der O!k# /k!".

To summarize, we considered the two classes of station-
ary state: P=D and P-0. The former is the stationary state
with the balance between production !positive definite" and
total dissipation, without the coupling to the flow generation.
One may understand this process as the cascade of the
phasetrophy. The latter is achieved by including the effect of
flow generation. The P=0 state is achieved order by order
since the entropy destruction rate due to zonal flow and in-
trinsic toroidal rotation differ by O!k# /k!". The dominant
balance occurs between "T relaxation and zonal flow gen-
eration. The effect of intrinsic toroidal rotation generation
appears in the next order in O!k# /k!" and vanishes for a
stationary state. Given all the terms calculated above, the
total production rate becomes

P = n$i1"T

T
22

− nK1 'VE(!
vthi

22

+ n$%1 'V#(!
vthi

22

− n
&r#

res2

vthi
2 $%

.

!32"

The first two terms balance at the lowest order and the next
two terms balance at the next order. In the next section, we
calculate the efficiency of flow generation for the stationary
state with flow, i.e., the P=0 state.

102313-6 Kosuga, Diamond, and Gürcan Phys. Plasmas 17, 102313 #2010!



III. EFFICIENCY OF INTRINSIC FLOW DRIVE

Having established the entropy budget for the flow gen-
eration and relaxation process, we are ready to calculate the
efficiency of flow generation. In this section, we present a
definition and calculation for the plasma flow generation ef-
ficiency. First, we define the efficiency using the entropy
budget in the last section. After defining the efficiency, we
give the actual calculation of its value and scaling, both for
zonal flow and intrinsic toroidal rotation.

A. Definition of efficiency

With the flow generation terms in the production rate, we
have

$tS0 =, d3x7n$i1"T

T
22

− nK
'VE(!2

vthi
2

+ n$%
'V#(!2

vthi
2 − n

&r#
res2

vthi
2 $%

8 . !33"

We calculate the efficiency of flow generation for stationary
state with P=0, where the balance is achieved order by or-
der. Using the expression for the entropy production rate, we
define the efficiency of plasma flow generation as follows:

e )
.*d3xPflow.

*d3xPnet
, !34"

i.e., the ratio between the magnitude of the entropy destruc-
tion rate due to flow generation and the total entropy produc-
tion rate due to relaxation. Note that the efficiency here is
defined using the entropy production rate and destruction
rate !)Q̇, where Q is heat, not heat flux", while usually the
efficiency of a thermodynamic engine is defined in terms of
heat and work !)Q". In other words, the former is defined
using ratios of power, while the latter is defined using
ratios of energy. As for the entropy destruction mechanism,
we can consider two cases, i.e., zonal flow generation
Pflow=−!nK'VE(!2" /vthi

2 and intrinsic toroidal flow generation
Pflow=−n!&r#

res"2 /$%. As for the net production rate, we have

Pnet = n$i1"T

T
22

+ n$%1 'V#(!
vthi

22

. !35"

The first term is related to "T relaxation due to turbulence.
The second term is related to the turbulent viscous heating.
The second term is smaller than the first term by order of
!'V#( /vthi"2, where !'V#( /vthi"2)Mth

2 $0.01, typically. This
follows, in part, from

n$%1 'V#(!
vthi

22

$ n$%1 'V#(!
'V#(

22 'V#(2

vthi
2 $ n$i1"T

T
22 'V#(2

vthi
2 ,

with Pr)$% /$i$1 and "T /T$'V#(! / 'V#(. Hereafter, we
only keep the dominant contribution to the net entropy bal-
ance, i.e., Pnet-$i!"T /T"2. Since we drop the positive defi-
nite term !the turbulent viscous heating" in the denominator
in Eq. !34", we calculate an upper bound for the efficiency.

B. Efficiency of zonal flow generation

As the first case, we consider the efficiency of zonal flow
generation, although the outcome is trivial, as shown below.
Using the definition given above, we obtain, as an upper
bound,

eZF 7
*d3x!nK'VE(!2"/vthi

2

*d3x!n$i"/LT
2 . !36"

Since we are interested in the efficiency at a stationary state,
we substitute Eq. !23" for the value of 'VE(!. With the sub-
stitution, one obtains

eZF 7 1. !37"

This is the result we should expect given the assumption we
made, i.e., we considered flow shear dominated state for +f2

balance,

$t, d*
'+f2(
'f(

=, d3x1n
$i

LT
2 −

n'VE(!2

vthi
2 K2 = 0, !38"

and defined the efficiency to be the ratio of the two terms in
the right hand side. Hence,

eZF 7 1 !39"

is just the restatement of the fact that we have a stationary
state by balancing the entropy production rate due to thermal
relaxation and the dominant entropy destruction rate due to
zonal flow growth.

C. Efficiency of intrinsic toroidal flow generation

The efficiency of zonal flow production was calculated
using dominant terms in the production rate, Eq. !32". By
going to next order in O!k# /k!", we can calculate the effi-
ciency of intrinsic toroidal rotation generation. In this pic-
ture, generation of intrinsic toroidal rotation is considered to
be a two step process !Fig. 3". First, a stationary state is
achieved by a balance between dominant terms in the en-
tropy production rate, i.e., temperature relaxation and zonal
flow generation. This is the state given by the stationary
solution of Eqs. !26a" and !26b" with eZF$1. As a secondary
process, this pre-existing stationary turbulent plasma and
shear flow give rise to the wave driven residual stress, which
generates an intrinsic toroidal torque. Thus, the efficiency of
intrinsic toroidal flow in this process is, from the definition,

eIR -
*d3xn!&r#

res"2/!vthi
2 $%"

*d3xn$i!"T/T"2 . !40"

FIG. 3. Turbulent plasma and flow generation.
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We can easily estimate the order of magnitude for
eIR. Using the stationary condition for intrinsic flow
&r#

res=$%'V#(! and assuming 'V#(! / 'V#($8"T /T %where 8 is
a O!1" constant factor&, we can obtain !here Mi)'V#( /vthi is
toroidal Mach number"

eIR =
*d3xn$%'V#(!2/vthi

2

*d3xn$i!"T/T"2 $ 82Mi
2. !41"

For a typical value of Mi$0.1 and 8$1, we have
eIR$0.01 which states that intrinsic toroidal rotation genera-
tion has low efficiency. This is also consistent with the as-
sumption that intrinsic toroidal rotation contribution to en-
tropy generation is smaller than that from zonal flow. Both
are a straightforward consequence of the ordering k# 1k!.
Note that more careful consideration must be given to cases
with reversed shear.

In order to explicitly calculate the scaling form of eIR,
one needs the modeling of residual stress. In doing so, we
consider a simple 'VE(! driven case, since 'VE(! is already
given as a consequence of lowest order balance in +f2 sta-
tionarity. In this case, a shift in the spectral envelope, which
is required for nonzero Reynolds stress 'k#k(() 'x(, origi-
nates from the radial electric field shear or 'VE(! as10

/ k#

k(
0 = − ""

Ls

2cs
'VE(! !42"

for simple drift wave turbulence. Here "")"s /a, "s is ion
sound Larmor radius, Ls

−1= ŝ / !qR" is a shear length, and a is
the minor radius. This can be further calculated by using the
stationary value for the E!B flow, Eq. !24",

/ k#

k(
0 = 9 ""

Ls

2cs
3$i

K
vthi

LT
= 9

""

2/
3$i

K

Ls

LT
, !43"

where /)Te /Ti. The sign is ultimately determined by the
sign of E!B shear; however, in the following discussion we
only need the squared value of 'k# /k((, so the sign is not
important. Given the symmetry breaking by E!B shear, one
can calculate the residual stress driven by the wave momen-
tum flux as9

&r#
res = K'VE(!/ k#

k(
0 , !44"

=− ""

Ls

2cs
K'VE(!2, !45"

=− ""

Ls

2cs
$i1"T

T
22

vthi
2 . !46"

Here we assumed the E!B flow shear symmetry breaking in
the second equality and +f2 stationarity in the third equality.
Note that the residual stress scales directly as the temperature
gradient, "T. This is due to the fact that to estimate 'VE(!, we
used +f2 stationarity instead of radial force balance, which
would relate 'VE(! to the pressure gradient "P, rather than
"T. Use of +f2 stationarity is more consistent, with both the
model under study and with assumptions made in the theory.
A recent simulation result by Wang et al.25 exhibits a similar

behavior, albeit the scaling is between intrinsic torque
!)" ·&r#

res" and ion temperature gradient. Wang also noted
that intrinsic torque scales with "Te for CTEM turbulence.26

One of the consequences of the residual stress modeling
here, although somewhat outside of the scope of the paper, is
that one can calculate a nontrivial stationary profile of intrin-
sic toroidal flow as

'V#(! =
&r#

res

$%
= −

1
2

""

$i

$%

Ls

cs
1"T

T
22

vthi
2 . !47"

This simple relation directly relates the intrinsic toroidal flow
shear to the temperature gradient—which is consistent with
recent experiments on LHD !Ref. 27" and Alcator C-Mod—
and the magnetic shear. Note that the intrinsic toroidal
flow shear depends strongly on temperature gradient as
'V#(!) !"T"2, while zonal flow shear is directly proportional
to temperature gradient, 'VE(!)"T. This is because in this
model, E!B shear flow plays a dual role in intrinsic toroidal
flow shear; i.e., E!B shear flow breaks symmetry !'k#k((
) 'VE(!" and gives rise to the flux of wave momentum
!&r#

res) 'VE(!".9 Hence, 'V#(!) 'VE(!2, which gives the !"T"2

dependence. Note also the explicit "" dependence, which
originates from the symmetry breaking. One can also calcu-
late the flow velocity 'V#( by integrating once to show

'V#(
vthi

-
1
2

""

$i

$%

Ls

LT
3Ti

Te
. !48"

Here we used !T! /T"!=−!T! /T"2+T" /T-−!T! /T"2. The
scaling derived here can be compared to Rice scaling3

3v%!0"$3Wp / Ip, which shows similar behavior; "T is large
when confinement is good, such as the H-mode, which tracks
the 3Wp behavior. Current scaling can enter through the ge-
ometry of the B field, Ls)q / ŝ, which suggests the scaling,
q)B(

−1$ Ip
−1. Note that the scaling calculated here shows the

direct dependence on "T rather than "P, since '+f2( station-
arity is used to calculate 'VE(! and '+f2( evolves via ITG
turbulence. Note also that the expression for the flow con-
tains the information regarding directionality. However, the
sign of the flow direction is strongly model dependent.10

Moreover, this is a consequence of residual stress modeling
and is not directly related to the efficiency calculation, which
is the main focus of the paper. Indeed, note e$&r#

res2, so e is
independent of the sign of &r#

res. Hence, here we do not pur-
sue a detailed discussion regarding the relation between flow
direction and entropy, but rather leave this to a future publi-
cation. We also note that a similar scaling 3v%$"'T( /B(

was proposed on the basis of the modeling of off-diagonal
components in momentum flux.28,29 That work was con-
cerned with the velocity increment for the change of NBI
direction and included the explicit momentum source !NBI
torque" in the analysis.

The efficiency can be calculated by using the value for
&r#

res,
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eIR =
, d3xn

$i

$%
$i!"T/T"2 Ls

2

LT
2 %

""
2

4
vthi

2

cs
2

*d3xn$i!"T/T"2 $ ""
2q2

ŝ2

R2

LT
2 , !49"

where we assumed that $i$$%, Te$Ti, and ŝ%0. The effi-
ciency depends on !i" machine size, "", which implies the
efficiency will decrease for larger machines. Note that the ""

scaling appears, even after calculating the ratio of turbulence
driven quantities, i.e., it is not a trivial consequence of
.e.%̃ /Te$"" scaling. In fact, the "" scaling originates from
"" dependence in the symmetry breaking correlator,
'k#k(() 'x()"". We speculate the "" dependence is thus in-
herent to any residual stress modeling based on k# symmetry
breaking of drift wave turbulence. !ii" Geometry of the B
field, q / ŝ. In a simple geometry with ŝ=const$O!1", the
efficiency varies as q)B(

−1$ Ip
−1, which shows an unfavor-

able current scaling, as in the Rice scaling3 3v%!0"
$3Wp / Ip. Note that this is a q!r" scaling, not an Ip scaling.
!iii" Temperature gradient, R /LT, which originates from both
symmetry breaking and wave momentum flux driven by VE!
)"T. Plasmas with a steep gradient, i.e., such as H-mode
plasmas, are more effective and efficient for driving intrinsic
toroidal rotation. The dependence on "T can be linked to the
3Wp dependence in the Rice scaling. Here, the efficiency
scaling of intrinsic rotation drive is directly tied to "T rather
than "P. This is a consequence of the fact that the model in
this paper is derived for ITG turbulence. The resultant E
!B flow is also driven by ITG turbulence, so it is no surprise
that we have 'VE(!)"T. Note that the scaling was evaluated
in local form in the last expression. This is a reasonable
approximation when a system has a well-defined gradient
region, such as for a peaked profile or a transport barrier, for
example. Of course the case with reversed shear internal
transport barrier is of great interest; however, this is beyond
the scope of the paper, which assumes normal shear with ŝ
$O!1".

IV. CONCLUSION

In this paper, by analogy between plasma flow genera-
tion and an engine, we introduced the concept of flow gen-
eration efficiency by calculating the ratio of the entropy de-
struction rate due to turbulent flow generation to the entropy
production rate due to thermal relaxation. The principal re-
sults are the following.

!1" The entropy production rate was calculated and shown
to be

P = n$i1"T

T
22

− nK1 'VE(!
vthi

22

+ n$%1 'V#(!
vthi

22

− n
&r#

res2

vthi
2 $%

.

Thermal relaxation and viscous heating produce entropy.
Flow generation, driving both zonal flow and intrinsic
toroidal rotation, leads to the destruction of entropy. The
first two terms are larger than the last two terms by the
order of O!k# /k!". The production rate due thermal re-
laxation !the first term" and viscous heating !the third
term" differs in magnitude by Mi

2)!'V#( /vthi"2$0.01
for a typical value of Mi$0.1, since $i$$%,

!'V#(! /vthi"$Mi!'V#(! / 'V#(", !"T /T"$8!'V#(! / 'V#(",
and 8$1.

!2" Coupled equations for phase space density fluctuation
intensity +f2 and zonal flow were formulated based on
entropy budget and wave kinetic analysis. They have a
similar structure to the familiar predator-prey model,

$t, d*
'+f2(
2'f(

=, d3x7n$i1"T

T
22

− nK1 'VE(!
vthi

228 ,

$t
'VE(!2

2
= Kq̄r

2'VE(!2 − 2col'VE(!2,

where +f2 plays the role of the prey population density.
!3" The stationary levels of zonal flow and intrinsic toroidal

rotation were calculated for the state achieved by impos-
ing P=0 order by order. They are

'VE(!2 =
$i

K

vthi
2

LT
2 ,

'V#(! = −
1
2

""

$i

$%

Ls

cs
1"T

T
22

vthi
2 ,

'V#(
vthi

-
1
2

""

$i

$%

Ls

LT
3Ti

Te
.

The first relation is obtained from lowest order balance
in the entropy production rate. The E!B shear is tied to
the "T thermodynamic force directly, since at saturation
entropy destruction due to zonal flow balances entropy
production due to thermal relaxation. The second rela-
tion is calculated from the next order balance in the en-
tropy production rate and the third relation is obtained
by integrating the second relation. The intrinsic toroidal
flow shows a similar scaling to the Rice scaling
3v%!0"$3Wp / Ip, i.e., LT

−1$"T corresponds to 3Wp
and Ls)q$B(

−1 for fixed magnetic shear corresponds to
Ip

−1. Explicit "" scaling originates from the symmetry
breaking mechanism invoked in the model.

!4" The efficiency of flow generation is defined as the ratio
of entropy destruction rate due to flow generation to
entropy production rate due to thermal relaxation. The
actual value for the efficiency was calculated for intrin-
sic toroidal rotation and shown to be eIR$Mi

2

$0.01–0.1 for a value of Mi$0.1–0.3. This indicates
that the drive of toroidal rotation is inherently one of the
processes of modest efficiency. This finding follows
from k# 1k!.

!5" The scaling of the intrinsic toroidal flow generation ef-
ficiency was derived as

eIR = ""
2q2

ŝ2

R2

LT
2 .

The efficiency of intrinsic toroidal flow generation scales
as machine size "", geometry of the B field q / ŝ, and
temperature profile R /LT. Related to !3" above, the effi-
ciency exhibits a similar scaling behavior to the Rice
scaling, except for the appearance of explicit "" scaling.
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Note that the efficiency scaling suggests a possible ori-
gin of the unfavorable current scaling through the safety
factor30 q.

As a caveat, the model cannot capture the phenomenol-
ogy of flow direction dependence on plasma current direc-
tion. In particular, the model cannot describe the reversal of
flow direction in TCV,31 since this reversal is likely related to
the conversion of drift modes between ion and electron
branches. However, the model presented here includes only
ITG turbulence. A recent simulation by Wang also showed
that the residual stress scaling is strongly dependent upon the
kind of driving turbulence, i.e., the residual stress scale with
"Ti for ITG turbulence and with "Pe for CTEM
turbulence,26 which is likely to give a different efficiency
scaling for CTEM turbulence. To capture the flow reversal
physics and clarify the mode dependence of the efficiency
scaling, one would need a further extension of the theory to
include the dynamics of nonadiabatic electrons and their role
in the entropy budget. The boundary term is dropped
throughout the analysis as well. These may also have an
impact on the entropy budget. Note that in H-mode, turbu-
lence is unlikely and fluctuation flux, a cause of the boundary
terms, is quenched. Note also that the calculation imple-
mented here is a reasonably faithful model of the computer
simulation studies by Wang.25 In that +f PIC simulation us-
ing GTS, "%=0 is imposed at the boundaries, thus guaran-
teeing no entropy outflow. Interestingly, that simulation ob-
served symmetry breaking by zonal flow shear 'VE(! and a
level of intrinsic toroidal rotation 'V%($"T, as calculated
here. This suggests that it would be interesting for the simu-
lation to examine the "" and Ip scaling of the intrinsic rota-
tion, as well as to directly calculate the efficiency and com-
pare with theoretical predictions. The role of the boundary
term will be pursued in the future publication.
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APPENDIX A: LINEAR MODE

In this section, we review the basic properties of drift
waves !DWs" which we need in the calculation of shift in the
mode. First we start with DW without symmetry breaking.
Susceptibility for DW %ñ /n=$!.e.%̃ /Te"& is given by

$ =
4"e

4
+

k#
2cs

2

42 − 1 − k!
2 "s

2. !A1"

In sheared magnetic field, susceptibility takes an operator
form,

$̂ =
4"e

4
+

ky
2cs

2x2

42Ls
2 − 1 − ky

2"s
2 + "s

2$x
2. !A2"

Solving the eigenvalue problem $̂%̂=0, one obtains

4 =
4"e

1 + ky
2"s

2 − i
.Ln.
.Ls.

, !A3"

% ) exp1− i
:

2
x22 with : )

Ln

"s
2Ls

. !A4"

With E!B shear flow as a symmetry breaker,

$̂ -
4"e

4
11 −

ky'VE(!x
4

2 +
ky

2cs
2x2

42Ls
2 − 1 − ky

2"s
2 + "s

2$x
2,

!A5"

and the mode will be shifted around a rational surface by

x0 = − ""

Ls
2

2cs
'VE(!, !A6"

% ) exp1− i
:

2
!x + x0"22 . !A7"

Then the spectral average of k# is obtained as

/ k#

k(
0 = / x0

Ls
0 = − ""

Ls

2cs
'VE(!. !A8"

APPENDIX B: WAVE KINETIC ANALYSIS OF FLOW
GENERATION

In this section, we derive the radial momentum flux of
E!B shear flow, the growth rate of the mean E!B flow, and
the radial momentum flux of toroidal flow based on wave
kinetic equations. We start with wave kinetic equation,

$tNk +
$4k

$k
·
$Nk

$x
−

$4k

$x
·
$Nk

$k
= − 2

Im ;

$;/$4
Nk + Cw!Nk" .

!B1"

Here Nk= !$; /$4"!.Ek.2 /8<" is wave action density and we
allowed wave-wave scattering in the right hand side. At the
simplest level one can employ Krook type operator Cw!Nk"
=−2eff+Nk. In the following calculation we assume strong
“collisionality” between waves, i.e., 2eff

−1 is assumed to be
the fastest timescale.9 Note that the dielectric function ;
is related to the susceptibility in the last section as
;=1−$ / !k2=De

2 ". For example, the wave action density for
EDW is

Nk = −
$$

$4

.Ek.2

8<k2=De
2 =

nTe

24"e
!1 + k!

2 "s
2"2+ e%k

Te
+2

. !B2"

Inhomogeneity in medium, such as intensity gradient and E
!B shear flow, builds up inhomogeneity in wave population
density. For the general derivation and discussion, see Ref. 9.
For the purpose of this paper, it is sufficient to consider a
pure 'VE(!!x" driven case. For this case, one can solve wave
kinetic equation to obtain
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+Nk!x" =
1

2eff
k(+'VE(!!x"

$'Nk(
$kr

. !B3"

With this, one can calculate the Reynolds stress to drive ZF
and the residual stress for toroidal flow.

For the Reynolds stress for ZF, one can calculate as

+'ṼrṼ((!x" = − 6
k

"s
2krk(cs

2

!1 + k!
2 "s

2"2

24"e

nTe
+Nk!x"

) K+'VE(!!x" , !B4"

where

K ) 6
k

cs
2/ZF

"s
2k(

2

!1 + k!
2 "s

2"21− kr
$''k(
$kr

2 , !B5"

'k)!1+k!
2 "s

2"2.!e%k" /Te.2 is potential enstrophy, and
/ZF)2eff

−1. The growth rate is easily obtained with the mo-
mentum flux derived above and shown to be

-flow = qr
2K . !B6"

The instability requires K,0 or −kr!$''k( /$kr",0, which is
the same criterion for zonal flow growth.

For the residual stress in the parallel momentum flux
&r#

res, one can calculate as9

&r#
res =

1
min

6
k

vg,rk#+Nk

=
cs

2

Ten
6

k
−

2"s
2krk(v"

!1 + k!2"s
2"

k#+Nk

)/ k#

k(
0K+'VE(!!x" , !B7"

where

/ k#

k(
0 )

1
K6

k

k#

k(
cs

2/ZF
"s

2k(
2

!1 + k!
2 "s

2"21− kr
$''k(
$kr

2 . !B8"
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